Sequential Batch Design for Gaussian Processes Employing Marginalization †

نویسندگان

  • Roland Preuss
  • Udo von Toussaint
چکیده

Within the Bayesian framework, we utilize Gaussian processes for parametric studies of long running computer codes. Since the simulations are expensive, it is necessary to exploit the computational budget in the best possible manner. Employing the sum over variances —being indicators for the quality of the fit—as the utility function, we establish an optimized and automated sequential parameter selection procedure. However, it is also often desirable to utilize the parallel running capabilities of present computer technology and abandon the sequential parameter selection for a faster overall turn-around time (wall-clock time). This paper proposes to achieve this by marginalizing over the expected outcomes at optimized test points in order to set up a pool of starting values for batch execution. For a one-dimensional test case, the numerical results are validated with the analytical solution. Eventually, a systematic convergence study demonstrates the advantage of the optimized approach over randomly chosen parameter settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Sequential Gaussian Conditional Simulation to Underground Mine Design Under Grade Uncertainty

In mining projects, all uncertainties associated with a project must be considered to determine the feasibility study. Grade uncertainty is one of the major components of technical uncertainty that affects the variability of the project. Geostatistical simulation, as a reliable approach, is the most widely used method to quantify risk analysis to overcome the drawbacks of the estimation methods...

متن کامل

Sequential Bayesian optimal experimental design via approximate dynamic programming

The design of multiple experiments is commonly undertaken via suboptimal strategies, such as batch (open-loop) design that omits feedback or greedy (myopic) design that does not account for future effects. This paper introduces new strategies for the optimal design of sequential experiments. First, we rigorously formulate the general sequential optimal experimental design (sOED) problem as a dy...

متن کامل

Differentiating the Multipoint Expected Improvement for Optimal Batch Design

This work deals with parallel optimization of expensive objective functions which are modelled as sample realizations of Gaussian processes. The study is formalized as a Bayesian optimization problem, or continuous multi-armed bandit problem, where a batch of q > 0 arms is pulled in parallel at each iteration. Several algorithms have been developed for choosing batches by trading off exploitati...

متن کامل

Sequential Randomized Matrix Factorization for Gaussian Processes: Efficient Predictions and Hyper-parameter Optimization

This paper presents a sequential randomized lowrank matrix factorization approach for incrementally predicting values of an unknown function at test points using the Gaussian Processes framework. It is well-known that in the Gaussian processes framework, the computational bottlenecks are the inversion of the (regularized) kernel matrix and the computation of the hyper-parameters defining the ke...

متن کامل

Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization

Can one parallelize complex exploration– exploitation tradeoffs? As an example, consider the problem of optimal highthroughput experimental design, where we wish to sequentially design batches of experiments in order to simultaneously learn a surrogate function mapping stimulus to response and identify the maximum of the function. We formalize the task as a multiarmed bandit problem, where the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017